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Electrical machines often utilize stranded parallel conductors to reduce the skin-effect losses. This practice can lead to uneven
total current distribution among the strands, increasing the resistive losses. Direct finite element analysis of circulating current
problems can be computationally costly due to the large number of nodal unknowns in the conductor mesh. Methods to reduce
the computational burden exist for special problems only. This paper proposes two efficient finite element formulations to solve
circulating current problems with arbitrary winding configurations. According to simulations, the proposed methods yield reasonably
accurate results significantly faster than the traditional brute-force approach.

Index Terms—Approximation methods, eddy currents, finite element analysis, proximity effects.

I. INTRODUCTION

IN random-wound electrical machines, windings are often
divided into thin parallel strands to reduce the skin-effect

losses. However, stranding conductors like this can lead to
currents circulating between the parallel strands, occasionally
almost doubling the resistive stator losses. Surprisingly little
attention has been paid to finite-element (FE) analysis of these
circulating currents, mainly due to the long computation times
resulting from finely meshing a large number of thin strands
[1]. Indeed, approaches have been mostly limited to analytical
methods [2], [3]. Where FE analysis has been performed, it
has focused on machines with large form-wound conductors
[4].

To reduce the computation times, stranded conductors have
traditionally been modelled either as a large solid conductor
with a uniform equivalent current density [5], or homogenized
in the frequency- or time-domain [6]–[8]. Obviously, the
first approach fails to model the circulating currents at all.
Similarly, practically all work on homogenization has focused
purely on the skin- and proximity effects, assuming all strands
to be series-connected or restricting the analysis to Litz wires
[9].

This paper presents two alternative FE formulations to
calculate the circulating currents in an arbitrary winding, using
only a coarse mesh. The speed and accuracy of the proposed
methods are evaluated on an academic test problem. According
to the simulations, the methods yield reasonably accurate
solutions significantly faster than the brute-force method.

II. METHODS

A 2D eddy-current problem with Ns strands and Ni current
paths can be described by the vector potential formulation
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where ul are the voltages over the strands, η (k, l) indicates
if the strand l belongs to the current path k, and Dl is the
domain of the strand l [4]. Using the Galerkin approach yields
the following block matrix equation SAA +M ∂
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with the following block elements
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directly related to the strand l. Shape functions are denoted by
φ. A comprehensive problem description and a list of symbols
will be included in the full paper.

In the brute-force approach the strands are finely meshed to
obtain accurate skin- and proximity-effect losses. However,
it is the authors’ hypothesis that this is not necessary for
obtaining reasonably accurate total currents, provided that
the strands are thin compared to the skin-depth. Thus, two
alternative approaches are proposed, neither of them placing
any demands on the fineness or structure of the mesh used.
Extension to 3D problems should be relatively simple.

1) In the point-strand method, the strands are assumed thin
enough for the vector potential to be approximately constant
over their area. With this assumption, (5) can be reduced to
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where xl is the strand center.
2) In the polygon-strand method, Dl are approximated with

polygons but are otherwise unrestricted in size or shape. For



evaluating the integrals in (5) exactly, an integration scheme
utilizing Gaussian quadratures and fast auxiliary triangulation
is used. Details will be presented in the full paper.

III. RESULTS AND DISCUSSION

The accuracy of the proposed methods is evaluated on a
simple test problem. Uniform mesh refinement will be utilized
to analyse the accuracy and computational cost evolution.
Analysis is limited to linear time-harmonic problems for now.

An E-core inductor with 80 strands (1.7 mm in diameter) per
slot and 4 parallel paths is analysed. Figs. 1a and 1b show the
initial unrefined meshes used with the brute-force method and
the proposed methods, with 1792 and 151 nodes respectively.
Both meshes have 1st-order elements, and 16-gons are used
in the polygon-strand method. The winding configuration is
intentionally poor to obtain large circulating currents.
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(a) Brute-force.
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(b) Proposed.

Fig. 1. Initial unrefined meshes for brute-force and proposed methods. Strands
are highlighted with red.

To illustrate the potential accuracy of the proposed methods,
Fig. 2 shows the behaviour of the four currents in the complex
plane, as the supply frequency is increased from 10 Hz (solid
dot) to 1 kHz (empty dot). The solid lines have been calculated
with the brute-force method, while the dotted and dashed
lines represent the point-strand and polygon-strand method,
respectively. As can be seen, a good agreement between the
methods has been obtained.
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Fig. 2. Evolution of currents on the complex plane as frequency is increased.

Finally, Fig. 3 illustrates the computation times and mean er-
rors of all three methods, obtained by repeating the simulations
with different levels of uniform mesh refinement without any
adaptiveness. Currents obtained with the brute-force method
on a very dense mesh are used as reference values. Currents by

the proposed methods fall within 20 % of the reference values
at approximately 1/4000 of the computation cost, and within
5 % at 1/1000 of the cost. On denser meshes, the polygon-
strand and brute-force method are roughly on par, while the
point-strand method starts to diverge.
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Fig. 3. Mean errors and computation times with different levels of non-
adaptive mesh refinement.

A more comprehensive evaluation is underway. For now,
both methods seem to yield reasonably accurate results at
a fractional computational cost compared to the brute-force
approach. More importantly, arbitrarily coarse meshes can be
used. This is a significant improvement over the brute-force
method, where meshing requirements set a high lower bound
for the number of nodal unknowns.
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